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tree-gen is a program that generates C++ source code for tree structures based on a simple and concise input language.
The API documentation is generated by Doxygen.
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CHAPTER 1

Overview

tree-gen is a code generator that outputs all the repetitive stuff needed for defining a proper tree structure in C++.

Trees are described by *.tree files. Such a file consists of a number of directives at the top and one or more tree node
descriptions. Each tree node gets its own C++ class, with a bunch of methods defined on it for traversal, the visitor
pattern, safe typecasting, cloning, and so on. It would be extremely tedious and error prone to define all this stuff
manually, hence the generator.

It is important to realize and perhaps not immediately obvious that the recursive structure in a *.tree file represents
C++ inheritance rather than the actual tree structure. You may for instance encounter something like this:

expression {
addition {

...
}
subtraction {

...
}

}

That doesn’t mean an expression consists of an addition and a subtraction, but rather that an addition is a type of
expression, and subtraction is another.

1.1 Base classes and primitives

tree-gen trees consist of three kinds of objects: nodes, edges, and primitives.

The nodes are classes generated by tree-gen based on some base class. This is typically tree::base::Base. The class
inheritance tree of the node types is used for “union” types, i.e. to allow some node in the tree to be one of a number
of types. For example, some node may want to have an expression child node, which in practice would be for instance
an addition node or a subtraction node. At any level of this class hierarchy, nodes can be given attributes to store data.
These attributes are either edges or primitives.
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Edges define the relation between some parent node and some number of child nodes. Six edge classes are defined,
resulting in different relations between the nodes.

• tree::base::Maybe<T>: the parent will own zero or one child node of (super)type T.

• tree::base::One<T>: the parent will logically own exactly one child node of (super)type T.

• tree::base::Any<T>: the parent will own zero or more child nodes of (super)type T.

• tree::base::Many<T>: the parent will logically own one or more child node of (super)type T.

• tree::base::OptLink<T>: the parent links to zero or one child node of (super)type T elsewhere in the
tree.

• tree::base::Link<T>: the parent logically links to exactly one child node of (super)type T elsewhere in
the tree.

The “logically” term used above alludes to the fact that One/Many/Link don’t necessarily need to have at least one
child at all times. They may for instance be empty during construction. But at least one child node is required for the
tree to be considered to be “complete”. Furthermore, completeness with respect to some root node requires that any
Link or non-null OptLink refers to a node that is actually reachable from that root node.

Maybe and One are based on std::shared_ptr, Any and Many are based on std::vector<One>, and OptLink and Link
are based on std::weak_ptr, but these types are abstracted away from the user almost entirely. Notably, all exposed
dereference operations are null- and range-checked, throwing exceptions if there’s a problem, rather than causing a
segmentation fault down the line.

The namespace for the Base and edge classes can be set using the tree_namespace directive in case you want
to override them or add functionality. Note that you can use “using One = tree::base::One;” etc. if you only want
to override part of the classes. You can also opt to use the tree-all.[ch]pp.inc files, which define the same
structures that exist in the tree namespace, but allows you to override some of the standard library types they are
based on, for example to use a different base exception type. If the tree_namespace directive is not specified, the
namespace that the node classes are generated into will be used by default.

Finally, primitives are used to store the actual data, forming the leaves of the tree. They can generally be any externally-
defined C++ type, although a few template functions need to be defined and specialized for the types you want to use.
These are:

template <typename T>
T initialize() { ... }

template <typename T>
void serialize(const T &obj, tree::cbor::MapWriter &map) { ... }

template <typename T>
T deserialize(const tree::cbor::MapReader &map) { ... }

The initialize function is used to construct a primitive of type T in such a way that it has a defined value. This is in
contrast to the behavior of C’s own primitive types (int, bool, etc.), which are specified to be undefined until assigned.
This is avoided using this initialize function to prevent confusion caused by undefined behavior. Typically, initialize()
can be implemented using just return T{}; for the general case to defer to the constructor for complex types, and
then be specialized for the primitive types that you want to use.

The serialize and deserialize functions are optional. When given, logic is generated to serialize and deserialize entire
trees to and from a CBOR representation.

In addition to the type-safe primitives declared in the tree description file, nodes can also be annotated using arbitrary
types. Specifically, every node can be annotated with zero or one annotation of every C++ type. So, any struct or class
you make can be attached to any node in the tree, regardless of the tree specification. This is useful, for instance, to
carry metadata, such as line number or debugging information. When tree-gen is used to generate some user-facing
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tree structure in a library, users of the library can also use this to add their own data to a tree as they operate on it, to
prevent them from having to convert to their own data structure first.

Note that the above requires RTTI to be enabled and supported by the compiler, but there’s really no good reason to
disable that nowadays.

1.2 Defining node types

Nodes have the following form in the tree file:

# [documentation for node class]
[snake_case_node_name] {

# [documentation for primitive]
[snake_case_member_name]: [C++ namespace path];

# [documentation for edge/child node]
[snake_case_member_name]: [Maybe|One|Any|Many|OptLink|Link]<[snake_case_node_

→˓name]>;

# [documentation for external edge/child node]
[snake_case_member_name]: external [Maybe|One|Any|Many|OptLink|Link]<[C++

→˓namespace path]>;

[zero or more specializations of this node; recursive structure]

[optional reorder directive]
}

Nodes can have zero or more primitives, zero or more edges/child nodes, zero or more external edges/child nodes, and
zero or more specializations.

The difference between normal edges and external edges is that the type for a normal edge must resolve to another
node in the same tree file, while an external edge may use any C++ type name for the node class. That allows you to
refer to nodes defined in other tree files as well. Note however that the generator expects external nodes to actually be
node classes, such that it can properly generate the debug dump indentation logic, among other things.

Note that while node type names are specified in snake_case in the tree file, the name will be converted to TitleCase
for the generated class names to follow decent C++ naming conventions. This is just because it’s easier to convert
snake case to title case than vice versa, and the generator uses both forms (title case for the class names, snake case
for methods and members).

Note also the comments explicitly added to the example. Comments using a # are interpreted as docstrings by the
generator; they are copied into the source code using javadoc-style comment blocks. This also means you can’t
use #-“comments” everywhere, since they’re actually a grammatical construct. Therefore, tree-gen also supports //
comments. These are completely ignored by the parser.

The order in which nodes are defined doesn’t matter. This allows you to make recursive tree structures, without having
to worry about forward declarations. The generator handles those. The order in which the attributes of a node are
defined does matter, though, as it’s used for the order in which the values can be passed to the node constructor; they
are ordered subclass to superclass, top to bottom.

The order of the primitives and child notes (a.k.a. fields) is used in a few places, primarily the constructor and for
debug dump output generation. The order is as specified within each class hierarchy level, but the fields of the more-
specialized classes come before the fields of their ancestors.

When additions are made to a tree, it may be required to maintain compatibility with older tree versions by maintaining
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field order. In order to support this, the above field order can be overridden using a reorder directive. This directive
has the following syntax:

# [optional documentation (ignored)]
reorder(a, b, c);

where a, b, c is the desired order of the fields. Any fields not explicitly specified in the list will automatically
appear at the end, using the default order.

1.3 Directives

The following directives exist. They should be placed at the top of the tree file, before the first node. Their order
doesn’t matter, unless otherwise specified. Note that most directives are required.

• source: used to specify documentation for the generated source file; any docstring above the directive is
copied into the file as file-level doxygen documentation.

• header: used to specify documentation for the generated header file; any docstring above the directive is
copied into the file as file-level doxygen documentation.

• python: used to specify documentation for the generated Python file (if enabled via the command line); any
docstring above the directive is copied into the Python file’s docstring.

• tree_namespace <namespace::path>: the namespace that the Base and edge classes live in. You
should set this to tree::base unless you intend to override or use different base classes. This is unused in
Python.

• initialize_function <namespace::path::initialize>: the name (including namespace path
leading up to it) of the T() function used for getting the default value of any of the used primitive classes.
Unused in Python; here, the default constructor is used regardless of type (as it always exists and is meaningful
in Python).

• serdes_functions <namespace::path::serialize> <namespace::path::deserialize>:
optionally, the names (including namespace paths leading up to them) of the functions used to respectively
serialize and deserialize primitive classes. If not specified, serialization functionality is disabled in C++. Python
always has serdes support, but support is augmented when a serdes function pair is specified. The Python
generator interprets the namespace path as a module path. Refer to the serialization section for more info.

• location <namespace_path::SourceLocation>: optionally, the name of the source location an-
notation class (including namespace path leading up to it). The debug dump will look for an annotation of this
type on each node when doing a debug dump, and if it exists, uses it to add source information to the node,
by streaming out a # followed by the stream overload for the class. The base class needs to be capable of
annotations if you use this. This is not supported in Python.

• include "<path>": adds an #include statement to the top of the generated C++ header file.

• src_include "<path>": like include, but adds to the top of the generated C++ source file only.

• import ..., from ... import ...: adds Python import statements to the top of the generated module.

• namespace <name>: used to specify the namespace for the generated tree classes. As in C++, you need
multiple of these to specify the full path. The docstring for the first annotation of this type that has a docstring
in front is used to document the innermost namespace javadoc-style for Doxygen documentation. This is not
used in Python.
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1.4 Generated APIs

The following methods are generated for each node class:

• a constructor with all members of the node in its signature as optional values, defaulting to the values returned
by the initializer function.

• bool is_complete() const: returns whether the node its called on and any subtree rooted in that node
is fully defined (no empty One, Many or Link, all array entries in Any/Many nonempty, and all Links and
defined OptLinks reachable from the root node).

• %NodeType type() const: returns the type of this node, using the also-generated %NodeType enumera-
tion.

• One<Node> copy() const: returns a shallow copy of this node.

• One<Node> clone() const: returns a deep copy of this node.

• A value-based equality operator. Note that this ignores equality of any annotations.

• void visit(Visitor &visitor) (C++ only): implements the visitor pattern using the also-generated
abstract Visitor/RecursiveVisitor classes. See below.

• void dump(std::ostream &out=std::cout, int indent=0): does a debug dump of the node
to the given stream with the given indentation level.

• SomeNodeType *as_some_node_type() (C++ only): does the equivalent of a dynamic_cast to the
given node type, returning this if the type is correct or nullptr if not.

Note that the prototypes for the Python equivalents differ as appropriate.

An implicit node class simply named Node is always generated, serving as the base class for all other nodes. In C++,
it is what derives from the Base class defined in the namespace specified using tree_namespace. In Python, the
Node class always derives directly from object.

1.4.1 Tree traversal

Tree traversal is accomplished by starting at the root and working your way down. The attributes specified in the tree
file appear as public members of the node classes. Maybe, One, OptLink, and Link can be dereferenced simply using
the * or -> operators; Any and Many use the [] indexation operator. Note that these are all null- and range-checked,
unlike the stdlib equivalents.

Tree traversal is complicated by the fact that you often don’t know exactly what the type of a node is. For example, an
expression node may actually be a subtraction or addition. For this, tree-gen supports a few different patterns in C++:

• Visitor pattern. You define a class inheriting from the generated Visitor or RecursiveVisitor classes.
These abstract classes provide or require you to implement functions for each node type. The appropriate one
then gets called when you pass an instance of your visitor class to the visit() method on a node. You must
always override visit_node(), usually to throw a suitable exception in case an unexpected node is encoun-
tered. The default implementation for all the other node types differs between the two classes. For Visitor,
the default implementation falls back to the next more generically typed function (visit_subtraction()
falls back to visit_expression(), visit_expression() falls back to visit_node()). For
RecursiveVisitor, the default implementation for non-leaf node types recursively calls visit() for
all child nodes, thus recursively traversing the tree. For leaf nodes, both visitor classes have the same behavior.

• Using the ‘as_()‘ methods.* Given for instance an expression node, you might do
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if (auto addition = expression.as_addition()) {
...

} else if (auto subtraction = expression.as_subtraction()) {
...

} else {
...

}

Because a nullptr evaluates to false in C++, the blocks will only be executed if the cast succeeds. Be careful
copypasting though; you can accidentally use the addition variable in the subtraction block if you’d
want, but it’s obviously null in that case. C++ scoping is weird.

• Using a switch statement. You might do

switch (expression.type()) {
case NodeType::Addition:

...
case NodeType::Subtraction:

...
}

This doesn’t handle the cast for you, but in cases where you only need to switch based on the type and don’t
need access to members of the nodes this is more descriptive than the if/else form.

Just choose the method that makes the most sense within context. Python is so much more dynamic in general that
you’re better off using its duck typing functionality or using isinstance() directly, so no special features are
generated for this.

Note that tree-gen trees do not contain allow traversal back toward the root of a tree. Supporting this would greatly
complicate the internals and the user-facing API, because then you wouldn’t be able to just move nodes around. It is
therefore key that you design your trees and interfaces such that this information is not needed. If this is somehow
impossible, you’ll have to manage the links back up the tree manually using (Opt)Link edges.

1.4.2 Serialization and deserialization

Optionally, logic to serialize and deserialize trees can be generated in addition to the APIs above. To enable this, you
have to tell tree-gen how to serialize and deserialize the primitive types that you use in the tree through two templated
functions that must be specialized for all primitive types (similar and in addition to the initialization function):

template <typename T>
void serialize(const T &obj, tree::cbor::MapWriter &map) { ... }

template <typename T>
T deserialize(const tree::cbor::MapReader &map) { ... }

The former must serialize obj by calling the various append_*() functions on the given
tree::cbor::MapWriter object. The latter must perform the reverse operation. The namespace(s) and
names of these functions must be provided to tree-gen using the optional serdes_functions directive.
Specifying this directive enables the serialization and deserialization logic.

Once enabled, the entry point for serializing a tree is tree::base::serialize() or tree::base::serialize_file(), and deserial-
izing is tree::base::deserialize() or tree::base::deserialize_file(). The internal serialization and deserialization functions
in the edge classes and generated node classes are public and could also be used, but these require more boilerplate
due to link handling.

If you attempt to use these methods for a tree without serialization/deserialization support enabled, you’ll receive a
template error. Template errors are notoriously difficult to understand, so you have been warned. Don’t use them
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unless you enable support through the serdes_functions directive. Attempting to serialize a tree that is not
well-formed will lead to a tree::base::NotWellFormed exception.

Serialization format

The serialization format makes use of the RFC7049 CBOR data representation, serving as a compromise between the
readability of JSON and speed/simplicity of the serialization and deserialization logic. Specifically, CBOR can be
losslessly converted to and from JSON using third-party tools if need be for debugging (at least for as far as it’s used
here), but is itself a simple binary format.

Each edge and each primitive receives its own map in the tree. Note that Any and Many are internally represented as a
vector of One edges; therefore, Any/Many results in two nested edge objects. The data for nodes and their annotations
is stored along with the One/Maybe edges. The keys for the maps are the following:

empty Maybe:

{
"@T": "?",
"@t": null

}

filled Maybe:

{
"@T": "?",
"@i": <sequence number>,
"@t": "<TitleCase node type name>",
"<snake_case_attribute_name>": { <attribute data> },
...
"{<annotation type>}": { <annotation data> },
...

}

One:

{
"@T": "1",
"@i": <sequence number>,
"@t": "<TitleCase node type name>",
"<snake_case_attribute_name>": { <attribute data> },
...
"{<annotation type>}": { <annotation data> },
...

}

Any:

{
"@T": "*",
"@d": [

<`One` object for each item>
]

}

Many:

{
(continues on next page)
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(continued from previous page)

"@T": "+",
"@d": [

<`One` object for each item>
]

}

empty OptLink:

{
"@T": "@",
"@l": null

}

filled OptLink:

{
"@T": "@",
"@l": <sequence number of linked node>

}

Link:

{
"@T": "$",
"@l": <sequence number of linked node>

}

The @T entry stores which type of edge an object is. This is not strictly needed when deserializing as this information
should be known by context; instead, it is used as a validity check. The @i sequence numbers are unique integers
for all One/Maybe edges in the tree, which are used to recover the (Opt)Link pointers through their @l key. The @t
key is used to recover subtype information, as the tree only knows the abstract supertype of a node in general. These
are, however, not necessarily globally unique; they only need to distinguish between subclasses, and therefore just the
TitleCase name of the node type without C++ namespace is sufficient.

Keys that start with a { and close with a } are used for annotations. The string enclosed within the {} in the key is used
to store the annotation type. The identifier used can either be generated automatically by C++ using typeid(T).
name(), or can be specified manually to have more control. Any annotation type that doesn’t have a serialization and
deserialization function registered for it within tree::annotatable::serdes_registry is silently ignored in either direction.

All remaining keys map to the node attributes using their snake_case name. The corresponding value is (recursively)
one of the structures above for edges, or a map containing user-specified key/value pairs for primitives, serialized and
deserialized using the functions specified by the serdes_functions directive.

The names of the keys are chosen such that, when ordered by ASCII value, the order is as specified, and such that
there can never be name conflicts. The commonly used keys and values are short to minimize serialization and
deserialization overhead.

1.4.3 Python support

In addition to C++, tree-gen can also generate pure-Python objects to represent the tree. As in C++, each node
type becomes a class, and class hierarchy is used similarly. The edge classes don’t exist, however; instead, their
functionality is baked into the generated code to prevent an unnecessary user-facing level of indirection during tree
traversal that cannot be hidden in Python. Despite this, the generated structures provide a similar level of type safety
as the C++ structures do; all writes to fields of node classes are type-checked.
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Where applicable, the generated Python file assumes that the Python module tree corresponds with the namespace
hierarchy in the C++ world. This applies to the following things:

• primitive type declarations;

• external node types;

• (de)serialization functions.

The initialization function isn’t used in Python; rather, the default constructor of the primitive types is used.

The connection between the C++ and Python world is handled through CBOR serialization and deserialization rather
than providing Python wrappers around the C++ objects. While this approach isn’t as performant as the alternative,
it allows a much simpler and more Pythonic interface to be exposed to the user. Serdes is therefore perhaps the most
important feature of the Python generator. Note however that it is entirely up to the program or library using tree-gen to
provide the requisite interface between the C++ and Python worlds (for example through swig); tree-gen just ensures
that the Python and C++ tree implementations always remain in sync.

The serialization and deserialization functions naturally have a different signature in Python than they do in C++.
More specifically, the functions must look like this:

def serialize(typ, val):
# typ is either a type (for primitives) or a str (for annotations). In
# the former case, isinstance(val, typ) may be assumed. Return value must
# be an object consisting of only the following types:
# - `dict`s with `str` keys;
# - `list`s;
# - `int`s between -2^63 and 2^63-1 inclusive;
# - `float`s;
# - `True`, `False`, or `None`;
# - `str`s;
# - `bytes` objects.
# The toplevel object must be a dict.
pass # TODO

def deserialize(typ, val):
# typ is either a type (for primitives) or a str (for annotations). val
# is a structure representing the CBOR serialization using the same
# Python primitives that can be returned by serialize(). The return value
# must be an instance of the specified `typ`e for primitives, but can be
# anything for annotations; for unknown annotation types, just returning
# val as-is is the recommended fallback behavior.
pass # TODO

Primitive serialization and deserialization can also be done using class methods:

class SomePrimitive:
def serialize_cbor(self):

# Called instead of serialize(SomePrimitive, self) if it exists.
pass # TODO

@staticmethod
def deserialize_cbor(cbor):

# Called instead of deserialize(SomePrimitive, cbor) if it exists.
pass # TODO

If no serdes_function directive is specified, serdes logic is still generated on the Python end; in this case, only
the class method variant is used, and annotations must be directly serializable to CBOR for them to be serialized (they
will be silently ignored if they’re not).

1.4. Generated APIs 11
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CHAPTER 2

Directory tree example

This example illustrates the tree system with a Windows-like directory tree structure. The System root node consists
of one or more drives, each of which has a drive letter and a root directory with named files and subdirectories. To
make things a little more interesting, a symlink-like “mount” is added as a file type, which links to another directory.

Using this tree, this example should teach you the basics of using tree-gen trees. The tutorial runs you through the C++
code of main.cpp and Python code of main.py, but be sure to check out directory.tree, primitives.
hpp, primitives.hpp, and (if you want to reproduce it in your own project) CMakeLists.txt copied to the
bottom of this page as well. You will also find the complete main.cpp and main.py there.

Let’s start by making the root node using tree::base::make(). This works somewhat like
std::make_shared(), but instead of returning a shared_ptr it returns a One edge. This might come off
as a bit odd, considering trees in graph theory start with a node rather than an edge. This is just a choice, though; a
side effect of how the internal ‘‘shared_ptr‘‘s work and how Link/OptLink edges work (if you’d store the tree as the
root structure directly, the root node wouldn’t always be stored in the same place on the heap, breaking link nodes).

auto system = tree::base::make<directory::System>();

At all times, you can use the dump() method on a node to see what it looks like for debugging purposes. It looks like
this:

system->dump();

↓

System(
drives: !MISSING

)

While this system node exists as a tree in memory and tree-gen seems happy, our system tree is at this time not
“well-formed”. A tree node (or an edge to one) is only considered well-formed if all of the following are true:

• All One edges in the tree connect to exactly one node.

• All Many edges in the tree connect to at least one node.

• All Link and non-empty OptLink nodes refer to a node reachable from the root node.

13
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• Each node in the tree is only used by a non-link node once.

Currently, the second requirement is not met.

ASSERT(!system.is_well_formed());

You can get slightly more information using check_well_formed(); instead or returning a boolean, it will throw
a NotWellFormed exception with an error message.

ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());

↓

tree::base::NotWellFormed exception message: 'Many' edge of type N9directory5DriveE
→˓is empty

Note that the name of the type is “mangled”. The exact output will vary from compiler to compiler, or even from
project to project. But hopefully it’ll be readable enough to make sense of in general.

To fix that, let’s add a default drive node to the tree. This should get drive letter A, because primitives::initialize() is
specialized to return that for ‘‘Letter‘‘s (see primitives.hpp).

system->drives.add(tree::base::make<directory::Drive>());

Drive has a One edge that is no empty, though, so the tree still isn’t well-formed. Let’s add one of those as well.

system->drives[0]->root_dir = tree::base::make<directory::Directory>();

Now we have a well-formed tree. Let’s have a look:

system.check_well_formed();
system->dump();

↓

System(
drives: [
Drive(

letter: A
root_dir: <

Directory(
entries: []
name:

)
>

)
]

)

We can just change the drive letter by assignment, as you would expect.

system->drives[0]->letter = 'C';

Before we add files and directories, let’s make a shorthand variable for the root directory. Because root_dir is an edge
to another node rather than the node itself, and thus acts like a pointer or reference to it, we can just copy it into a
variable and modify the variable to update the tree. Note that you’d normally just write “auto” for the type for brevity;
the type is shown here to make explicit what it turns into.

14 Chapter 2. Directory tree example
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directory::One<directory::Directory> root = system->drives[0]->root_dir;

Let’s make a “Program Files” subdirectory and add it to the root.

auto programs = tree::base::make<directory::Directory>(
tree::base::Any<directory::Entry>{},
"Program Files");

root->entries.add(programs);
system.check_well_formed();

That’s quite verbose. But in most cases it can be written way shorter. Here’s the same with the less versatile but also
less verbose emplace() method (which avoids the tree::make() call, but doesn’t allow an insertion index to be specified)
and with a “using namespace” for the tree. emplace() can also be chained, allowing multiple files and directories to be
added at once in this case.

{
using namespace directory;

root->entries.emplace<Directory>(Any<Entry>{}, "Windows")
.emplace<Directory>(Any<Entry>{}, "Users")
.emplace<File>("lots of hibernation data", "hiberfil.sys")
.emplace<File>("lots of page file data", "pagefile.sys")
.emplace<File>("lots of swap data", "swapfile.sys");

}
system.check_well_formed();

In order to look for a file in a directory, you’ll have to make your own function to iterate over them. After all, tree-gen
doesn’t know that the name field is a key; it has no concept of a key-value store. This is simple enough to make, but to
prevent this example from getting out of hand we’ll just use indices for now.

Let’s try to read the “lots of data” string from pagefile.sys.

ASSERT(root->entries[4]->name == "pagefile.sys");
// ASSERT(root->entries[4]->contents == "lots of page file data");
// '-> No member named 'contents' in 'directory::Entry'

Hm, that didn’t work so well, because C++ doesn’t know that entry 4 happens to be a file rather than a directory or a
mount. We have to tell it to cast to a file first (which throws a std::bad_cast if it’s not actually a file). The easiest way
to do that is like this:

ASSERT(root->entries[4]->as_file()->contents == "lots of page file data");

No verbose casts required; tree-gen will make member functions for all the possible subtypes.

While it’s possible to put the same node in a tree twice (without using a link), this is not allowed. This isn’t checked
until a well-formedness check is performed, however (and in fact can’t be without having access to the root node).

root->entries.add(root->entries[0]);
ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());

↓

tree::base::NotWellFormed exception message: Duplicate node of type
→˓N9directory5EntryEat address 0x56462575c440 found in tree

Note that we can index nodes Python-style with negative integers for add() and remove(), so remove(-1) will remove
the broken node we just added. Note that the -1 is not actually necessary, though, as it is the default.
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root->entries.remove(-1);
system.check_well_formed();

We can, of course, add copies of nodes. That’s what copy (shallow) and clone (deep) are for. Usually you’ll want a
deep copy, but in this case shallow is fine, because a File has no child nodes. Note that, even for a deep copy, links
are not modified; it is intended to copy a subtree to another part of the same tree. To make a complete copy of a
tree that maintains link semantics (i.e. does not link back to the original tree) the best way would be to go through
serialize/deserialize.

root->entries.add(root->entries[0]->copy());
system.check_well_formed();

Note that the generated classes don’t care that there are now two directories named Program Files in the root. As far
as they’re concerned, they’re two different directories with the same name. Let’s remove it again, though.

root->entries.remove();

Something we haven’t looked at yet are links. Links are edges in the tree that, well, turn it into something that isn’t
strictly a tree anymore. While One/Maybe/Any/Many require that nodes are unique, Link/OptLink require that they
are not unique, and are present elsewhere in the tree. Let’s make a new directory, and mount it in the Users directory.

auto user_dir = tree::base::make<directory::Directory>(
tree::base::Any<directory::Entry>{},
"");

root->entries.emplace<directory::Mount>(user_dir, "SomeUser");

Note that user_dir is not yet part of the tree. emplace works simply because it doesn’t check whether the directory is
in the tree yet. But the tree is no longer well-formed now.

ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());

↓

tree::base::NotWellFormed exception message: Link to node of type
→˓N9directory9DirectoryE at address 0x56462575ccc0 not found in tree

To make it work again, we can add it as a root directory to a second drive.

system->drives.emplace<directory::Drive>('D', user_dir);
system.check_well_formed();

A good way to confuse a filesystem is to make loops. tree-gen is okay with this, though.

system->drives[1]->root_dir->entries.emplace<directory::Mount>(root, "evil link to C:
→˓");
system.check_well_formed();

The only place where it matters is in the dump function, which only goes one level deep. After that, it’ll just print an
ellipsis.

system->dump();

↓

System(
drives: [

(continues on next page)
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Drive(
letter: C
root_dir: <

Directory(
entries: [
Directory(
entries: []
name: Program Files

)
Directory(
entries: []
name: Windows

)
Directory(
entries: []
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
Directory(
entries: [
Mount(
target --> <
...

>
name: evil link to C:

)
]
name:

)
>
name: SomeUser

)
]
name:

)
>

)
Drive(

letter: D
root_dir: <

Directory(
entries: [

Mount(
target --> <

(continues on next page)

17



tree-gen Documentation

(continued from previous page)

Directory(
entries: [
Directory(
entries: []
name: Program Files

)
Directory(
entries: []
name: Windows

)
Directory(
entries: []
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
...

>
name: SomeUser

)
]
name:

)
>
name: evil link to C:

)
]
name:

)
>

)
]

)

Now that we have a nice tree, let’s try the serialization and deserialization functionality. Serializing is easy:

std::string cbor = tree::base::serialize(system);

Let’s write it to a file; we’ll load this in Python later.

{
std::ofstream cbor_output;
cbor_output.open("tree.cbor", std::ios::out | std::ios::trunc | std::ios::binary);
cbor_output << cbor;

}
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Let’s also have a look at a hexdump of that.

int count = 0;
for (char c : cbor) {

if (count == 16) {
std::printf("\n");
count = 0;

} else if (count > 0 && count % 4 == 0) {
std::printf(" ");

}
std::printf("%02X ", (uint8_t)c);
count++;

}
std::printf("\n");

↓

BF 62 40 54 61 3F 62 40 69 00 62 40 74 66 53 79
73 74 65 6D 66 64 72 69 76 65 73 BF 62 40 54 61
2B 62 40 64 9F BF 62 40 54 61 31 62 40 69 01 62
40 74 65 44 72 69 76 65 66 6C 65 74 74 65 72 BF
63 76 61 6C 18 43 FF 68 72 6F 6F 74 5F 64 69 72
BF 62 40 54 61 31 62 40 69 02 62 40 74 69 44 69
72 65 63 74 6F 72 79 67 65 6E 74 72 69 65 73 BF
62 40 54 61 2A 62 40 64 9F BF 62 40 54 61 31 62
40 69 03 62 40 74 69 44 69 72 65 63 74 6F 72 79
67 65 6E 74 72 69 65 73 BF 62 40 54 61 2A 62 40
64 9F FF FF 64 6E 61 6D 65 BF 63 76 61 6C 6D 50
72 6F 67 72 61 6D 20 46 69 6C 65 73 FF FF BF 62
40 54 61 31 62 40 69 04 62 40 74 69 44 69 72 65
63 74 6F 72 79 67 65 6E 74 72 69 65 73 BF 62 40
54 61 2A 62 40 64 9F FF FF 64 6E 61 6D 65 BF 63
76 61 6C 67 57 69 6E 64 6F 77 73 FF FF BF 62 40
54 61 31 62 40 69 05 62 40 74 69 44 69 72 65 63
74 6F 72 79 67 65 6E 74 72 69 65 73 BF 62 40 54
61 2A 62 40 64 9F FF FF 64 6E 61 6D 65 BF 63 76
61 6C 65 55 73 65 72 73 FF FF BF 62 40 54 61 31
62 40 69 06 62 40 74 64 46 69 6C 65 68 63 6F 6E
74 65 6E 74 73 BF 63 76 61 6C 78 18 6C 6F 74 73
20 6F 66 20 68 69 62 65 72 6E 61 74 69 6F 6E 20
64 61 74 61 FF 64 6E 61 6D 65 BF 63 76 61 6C 6C
68 69 62 65 72 66 69 6C 2E 73 79 73 FF FF BF 62
40 54 61 31 62 40 69 07 62 40 74 64 46 69 6C 65
68 63 6F 6E 74 65 6E 74 73 BF 63 76 61 6C 76 6C
6F 74 73 20 6F 66 20 70 61 67 65 20 66 69 6C 65
20 64 61 74 61 FF 64 6E 61 6D 65 BF 63 76 61 6C
6C 70 61 67 65 66 69 6C 65 2E 73 79 73 FF FF BF
62 40 54 61 31 62 40 69 08 62 40 74 64 46 69 6C
65 68 63 6F 6E 74 65 6E 74 73 BF 63 76 61 6C 71
6C 6F 74 73 20 6F 66 20 73 77 61 70 20 64 61 74
61 FF 64 6E 61 6D 65 BF 63 76 61 6C 6C 73 77 61
70 66 69 6C 65 2E 73 79 73 FF FF BF 62 40 54 61
31 62 40 69 09 62 40 74 65 4D 6F 75 6E 74 66 74
61 72 67 65 74 BF 62 40 54 61 24 62 40 6C 0B FF
64 6E 61 6D 65 BF 63 76 61 6C 68 53 6F 6D 65 55
73 65 72 FF FF FF FF 64 6E 61 6D 65 BF 63 76 61
6C 60 FF FF FF BF 62 40 54 61 31 62 40 69 0A 62
40 74 65 44 72 69 76 65 66 6C 65 74 74 65 72 BF

(continues on next page)
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63 76 61 6C 18 44 FF 68 72 6F 6F 74 5F 64 69 72
BF 62 40 54 61 31 62 40 69 0B 62 40 74 69 44 69
72 65 63 74 6F 72 79 67 65 6E 74 72 69 65 73 BF
62 40 54 61 2A 62 40 64 9F BF 62 40 54 61 31 62
40 69 0C 62 40 74 65 4D 6F 75 6E 74 66 74 61 72
67 65 74 BF 62 40 54 61 24 62 40 6C 02 FF 64 6E
61 6D 65 BF 63 76 61 6C 6F 65 76 69 6C 20 6C 69
6E 6B 20 74 6F 20 43 3A FF FF FF FF 64 6E 61 6D
65 BF 63 76 61 6C 60 FF FF FF FF FF FF

You can pull that through http://cbor.me and https://jsonformatter.org to inspect the output, if you like.

We can deserialize it into a complete copy of the tree.

auto system2 = tree::base::deserialize<directory::System>(cbor);
system2->dump();

↓

System(
drives: [
Drive(

letter: C
root_dir: <

Directory(
entries: [

Directory(
entries: []
name: Program Files

)
Directory(
entries: []
name: Windows

)
Directory(
entries: []
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
Directory(
entries: [
Mount(
target --> <
...

(continues on next page)
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>
name: evil link to C:

)
]
name:

)
>
name: SomeUser

)
]
name:

)
>

)
Drive(

letter: D
root_dir: <
Directory(

entries: [
Mount(
target --> <
Directory(
entries: [
Directory(
entries: []
name: Program Files

)
Directory(
entries: []
name: Windows

)
Directory(
entries: []
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
...

>
name: SomeUser

)
]
name:

)
>

(continues on next page)
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name: evil link to C:
)

]
name:

)
>

)
]

)

Note that equality for two link edges is satisfied only if they point to the exact same node. That’s not the case for the
links in our two entirely separate trees, so the two trees register as unequal.

ASSERT(!system2.equals(system));

To be sure no data was lost, we’ll have to check the CBOR and debug dumps instead.

ASSERT(tree::base::serialize(system) == tree::base::serialize(system2));
std::ostringstream ss1{};
system->dump(ss1);
std::ostringstream ss2{};
system2->dump(ss2);
ASSERT(ss1.str() == ss2.str());

2.1 Python usage

Let us now turn our attention to tree-gen’s Python support. As you may remember from the introduction, tree-gen does
not provide a direct interface between Python and C++ using a tool like SWIG; rather, it provides conversion between
a CBOR tree representation and the in-memory representations of both languages. It then becomes trivial for users of
the tree-gen structure to provide an API to users that converts from one to the other, since only a single string of bytes
has to be transferred.

Recall that we wrote the CBOR representation of the tree we constructed in the C++ example to a file. Let’s try loading
this file with Python.

from directory import *

with open(os.path.join(TEST_DIR, 'tree.cbor'), 'rb') as f:
tree = System.deserialize(f.read())

tree.check_well_formed()
print(tree)

↓

System(
drives: [
Drive(

letter: C
root_dir: <

Directory(
entries: [

Directory(
entries: -

(continues on next page)
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name: Program Files
)
Directory(
entries: -
name: Windows

)
Directory(
entries: -
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
Directory(
entries: [
Mount(
target --> <
...

>
name: evil link to C:

)
]
name:

)
>
name: SomeUser

)
]
name:

)
>

)
Drive(

letter: D
root_dir: <
Directory(

entries: [
Mount(
target --> <
Directory(
entries: [
Directory(
entries: -
name: Program Files

)
Directory(

(continues on next page)
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entries: -
name: Windows

)
Directory(
entries: -
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
...

>
name: SomeUser

)
]
name:

)
>
name: evil link to C:

)
]
name:

)
>

)
]

)

And there we go; the same structure in pure Python.

As you might expect from a pure-Python structure, field access is much less verbose than it is in C++.

print(tree.drives[0].letter)
print(tree.drives[0].root_dir.entries[0].name)

↓

C
Program Files

Perhaps contrary to Python intuition however, the structure provides type-safety. You can’t assign values to fields that
don’t exist. . .

tree.color_of_a_banana = 'yellow'

↓
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Traceback (most recent call last):
File "main.py", line 48, in <module>
tree.color_of_a_banana = 'yellow'

AttributeError: 'System' object has no attribute 'color_of_a_banana'

. . . or assign values of incorrect types to ones that do:

tree.drives[0] = 'not-a-drive'

↓

Traceback (most recent call last):
File "main.py", line 55, in <module>
tree.drives[0] = 'not-a-drive'

File "/home/docs/checkouts/readthedocs.org/user_builds/tree-gen/checkouts/stable/
→˓cbuild/examples/directory/directory.py", line 490, in __setitem__

.format(val, idx, self._T))
TypeError: object 'not-a-drive' is not an instance of 0

Note that the setters will however try to “typecast” objects they don’t know about (to be more specific, anything that
isn’t an instance of Node). So if we try to assign a string directly to tree.drives, you get something you might not have
expected:

tree.drives = 'not-a-set-of-drives'

↓

Traceback (most recent call last):
File "main.py", line 65, in <module>
tree.drives = 'not-a-set-of-drives'

File "/home/docs/checkouts/readthedocs.org/user_builds/tree-gen/checkouts/stable/
→˓cbuild/examples/directory/directory.py", line 1576, in drives

val = MultiDrive(val)
File "/home/docs/checkouts/readthedocs.org/user_builds/tree-gen/checkouts/stable/

→˓cbuild/examples/directory/directory.py", line 472, in __init__
.format(val, idx, self._T))

TypeError: object 'n' at index 0 is not an instance of <class 'directory.Drive'>

The setter for the drives property is trying to cast the string to a MultiDrive, which interprets its string input as any
other iterable, and ultimately tries to cast the first letter to a Drive. There’s not much that can be done about this; it’s
just how duck typing works.

Manipulation of trees in Python works just as you might expect it to in Python:

tree.drives.append(Drive('E'))
tree.drives[-1].root_dir = Directory([

File('test', 'test-contents'),
File('test2', 'test2-contents'),

])
del tree.drives[1]
assert not tree.is_well_formed()
tree.drives[0].root_dir.entries[-1].target = tree.drives[1].root_dir
tree.check_well_formed()
print(tree)

↓
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System(
drives: [
Drive(

letter: C
root_dir: <

Directory(
entries: [

Directory(
entries: -
name: Program Files

)
Directory(
entries: -
name: Windows

)
Directory(
entries: -
name: Users

)
File(
contents: lots of hibernation data
name: hiberfil.sys

)
File(
contents: lots of page file data
name: pagefile.sys

)
File(
contents: lots of swap data
name: swapfile.sys

)
Mount(
target --> <
Directory(
entries: [
File(
contents: test
name: test-contents

)
File(
contents: test2
name: test2-contents

)
]
name:

)
>
name: SomeUser

)
]
name:

)
>

)
Drive(

letter: E
root_dir: <

(continues on next page)
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Directory(
entries: [
File(
contents: test
name: test-contents

)
File(
contents: test2
name: test2-contents

)
]
name:

)
>

)
]

)

Once the Python code is done manipulating the structure, it can be serialized again.

cbor = tree.serialize()
assert cbor == System.deserialize(cbor).serialize()
count = 0
for c in cbor:

if count == 16:
print()
count = 0

elif count > 0 and count % 4 == 0:
print(' ', end='')

print('%02X ' % c, end='')
count += 1

print()

↓

A3 62 40 69 00 62 40 74 66 53 79 73 74 65 6D 66
64 72 69 76 65 73 A2 62 40 54 61 2B 62 40 64 82
A5 62 40 54 61 31 62 40 69 01 62 40 74 65 44 72
69 76 65 66 6C 65 74 74 65 72 A1 63 76 61 6C 18
43 68 72 6F 6F 74 5F 64 69 72 A5 62 40 54 61 31
62 40 69 02 62 40 74 69 44 69 72 65 63 74 6F 72
79 67 65 6E 74 72 69 65 73 A2 62 40 54 61 2A 62
40 64 87 A5 62 40 54 61 31 62 40 69 03 62 40 74
69 44 69 72 65 63 74 6F 72 79 67 65 6E 74 72 69
65 73 A2 62 40 54 61 2A 62 40 64 80 64 6E 61 6D
65 A1 63 76 61 6C 6D 50 72 6F 67 72 61 6D 20 46
69 6C 65 73 A5 62 40 54 61 31 62 40 69 04 62 40
74 69 44 69 72 65 63 74 6F 72 79 67 65 6E 74 72
69 65 73 A2 62 40 54 61 2A 62 40 64 80 64 6E 61
6D 65 A1 63 76 61 6C 67 57 69 6E 64 6F 77 73 A5
62 40 54 61 31 62 40 69 05 62 40 74 69 44 69 72
65 63 74 6F 72 79 67 65 6E 74 72 69 65 73 A2 62
40 54 61 2A 62 40 64 80 64 6E 61 6D 65 A1 63 76
61 6C 65 55 73 65 72 73 A5 62 40 54 61 31 62 40
69 06 62 40 74 64 46 69 6C 65 68 63 6F 6E 74 65
6E 74 73 A1 63 76 61 6C 78 18 6C 6F 74 73 20 6F
66 20 68 69 62 65 72 6E 61 74 69 6F 6E 20 64 61

(continues on next page)
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74 61 64 6E 61 6D 65 A1 63 76 61 6C 6C 68 69 62
65 72 66 69 6C 2E 73 79 73 A5 62 40 54 61 31 62
40 69 07 62 40 74 64 46 69 6C 65 68 63 6F 6E 74
65 6E 74 73 A1 63 76 61 6C 76 6C 6F 74 73 20 6F
66 20 70 61 67 65 20 66 69 6C 65 20 64 61 74 61
64 6E 61 6D 65 A1 63 76 61 6C 6C 70 61 67 65 66
69 6C 65 2E 73 79 73 A5 62 40 54 61 31 62 40 69
08 62 40 74 64 46 69 6C 65 68 63 6F 6E 74 65 6E
74 73 A1 63 76 61 6C 71 6C 6F 74 73 20 6F 66 20
73 77 61 70 20 64 61 74 61 64 6E 61 6D 65 A1 63
76 61 6C 6C 73 77 61 70 66 69 6C 65 2E 73 79 73
A5 62 40 54 61 31 62 40 69 09 62 40 74 65 4D 6F
75 6E 74 64 6E 61 6D 65 A1 63 76 61 6C 68 53 6F
6D 65 55 73 65 72 66 74 61 72 67 65 74 A2 62 40
54 61 24 62 40 6C 0B 64 6E 61 6D 65 A1 63 76 61
6C 60 A5 62 40 54 61 31 62 40 69 0A 62 40 74 65
44 72 69 76 65 66 6C 65 74 74 65 72 A1 63 76 61
6C 18 45 68 72 6F 6F 74 5F 64 69 72 A5 62 40 54
61 31 62 40 69 0B 62 40 74 69 44 69 72 65 63 74
6F 72 79 67 65 6E 74 72 69 65 73 A2 62 40 54 61
2A 62 40 64 82 A5 62 40 54 61 31 62 40 69 0C 62
40 74 64 46 69 6C 65 68 63 6F 6E 74 65 6E 74 73
A1 63 76 61 6C 64 74 65 73 74 64 6E 61 6D 65 A1
63 76 61 6C 6D 74 65 73 74 2D 63 6F 6E 74 65 6E
74 73 A5 62 40 54 61 31 62 40 69 0D 62 40 74 64
46 69 6C 65 68 63 6F 6E 74 65 6E 74 73 A1 63 76
61 6C 65 74 65 73 74 32 64 6E 61 6D 65 A1 63 76
61 6C 6E 74 65 73 74 32 2D 63 6F 6E 74 65 6E 74
73 64 6E 61 6D 65 A1 63 76 61 6C 60

2.2 Complete file listings

2.2.1 directory.tree

1 // Attach \file docstrings to the generated files for Doxygen.
2 # Implementation for classes representing a Windows directory tree.
3 source
4

5 # Header for classes representing a Windows directory tree.
6 header
7

8 // Include tree base classes.
9 include "tree-base.hpp"

10 tree_namespace tree::base
11

12 // Include primitive types.
13 include "primitives.hpp"
14 import primitives
15

16 // Initialization function to use to construct default values for the tree base
17 // classes and primitives.
18 initialize_function primitives::initialize
19 serdes_functions primitives::serialize primitives::deserialize

(continues on next page)
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20

21 // Set the namespace for the generated classes and attach a docstring.
22 # Namespace for classes representing a Windows directory tree.
23 namespace directory
24

25 # Root node, containing the drives and associated directory trees.
26 system {
27

28 # The drives available on the system. There must be at least one.
29 drives: Many<drive>;
30

31 }
32

33 # Represents a drive.
34 drive {
35

36 # The drive letter used to identify it.
37 letter: primitives::Letter;
38

39 # Root directory.
40 root_dir: One<directory>;
41

42 }
43

44 # Represents a directory entry.
45 entry {
46

47 # Name of the directory entry.
48 name: primitives::String;
49

50 # Represents a regular file.
51 file {
52

53 # The file contents.
54 contents: primitives::String;
55

56 }
57

58 # Represents a (sub)directory.
59 directory {
60

61 # The directory contents. Note that directories can be empty.
62 entries: Any<entry>;
63

64 }
65

66 # Represents a link to another directory.
67 mount {
68

69 # The directory linked to.
70 target: Link<directory>;
71

72 }
73

74 }
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2.2.2 primitives.hpp

1 /** \file
2 * Defines primitives used in the generated directory tree structure.
3 */
4

5 #pragma once
6

7 #include <string>
8

9 /**
10 * Namespace with primitives used in the generated directory tree structure.
11 */
12 namespace primitives {
13

14 /**
15 * Letter primitive, used to represent drive letters.
16 */
17 using Letter = char;
18

19 /**
20 * Strings, used to represent filenames and file contents.
21 */
22 using String = std::string;
23

24 /**
25 * Initialization function. This must be specialized for any types used as
26 * primitives in a tree that are actual C primitives (int, char, bool, etc),
27 * as these are not initialized by the T() construct.
28 */
29 template <class T>
30 T initialize() { return T(); };
31

32 /**
33 * Declare the default initializer for drive letters. It's declared inline
34 * to avoid having to make a cpp file just for this.
35 */
36 template <>
37 inline Letter initialize<Letter>() {
38 return 'A';
39 }
40

41 /**
42 * Serialization function. This must be specialized for any types used as
43 * primitives in a tree. The default implementation doesn't do anything.
44 */
45 template <typename T>
46 void serialize(const T &obj, tree::cbor::MapWriter &map) {
47 }
48

49 /**
50 * Serialization function for Letter.
51 */
52 template <>
53 inline void serialize<Letter>(const Letter &obj, tree::cbor::MapWriter &map) {
54 map.append_int("val", obj);
55 }

(continues on next page)
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56

57 /**
58 * Serialization function for String.
59 */
60 template <>
61 inline void serialize<String>(const String &obj, tree::cbor::MapWriter &map) {
62 map.append_string("val", obj);
63 }
64

65 /**
66 * Deserialization function. This must be specialized for any types used as
67 * primitives in a tree. The default implementation doesn't do anything.
68 */
69 template <typename T>
70 T deserialize(const tree::cbor::MapReader &map) {
71 return initialize<T>();
72 }
73

74 /**
75 * Deserialization function for Letter.
76 */
77 template <>
78 inline Letter deserialize<Letter>(const tree::cbor::MapReader &map) {
79 return map.at("val").as_int();
80 }
81

82 /**
83 * Deserialization function for String.
84 */
85 template <>
86 inline String deserialize<String>(const tree::cbor::MapReader &map) {
87 return map.at("val").as_string();
88 }
89

90 } // namespace primitives

2.2.3 primitives.py

1 class Letter(str):
2 """Letter primitive, used to represent drive letters."""
3 def __new__(cls, s='A'):
4 return str.__new__(cls, s)
5

6

7 class String(str):
8 """Strings, used to represent filenames and file contents."""
9 pass

10

11

12 def serialize(typ, val):
13 """Serialization function."""
14

15 # Serialization formats of primitives.
16 if typ is Letter:
17 return {'val': ord(val)}
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18 if typ is String:
19 return {'val': val}
20

21 # Serialization formats of annotations.
22 if isinstance(typ, str):
23 return val
24

25 # Some unknown type.
26 raise TypeError('no known serialization of type %r, value %r' % (typ, val))
27

28

29 def deserialize(typ, val):
30 """Deserialization function."""
31

32 # Serialization formats of primitives.
33 if typ is Letter:
34 return Letter(chr(val['val']))
35 if typ is String:
36 return String(val['val'])
37

38 # Serialization formats of annotations.
39 if isinstance(typ, str):
40 return val
41

42 # Some unknown type.
43 raise TypeError('no known deserialization for type %r, value %r' % (typ, val))

2.2.4 CMakeLists.txt

1 cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
2

3 project(directory-example CXX)
4

5 # Add the tree-gen repository root directory. Normally, your project would be
6 # located outside of tree-gen's root, which means you can omit the second
7 # argument.
8 add_subdirectory(../.. tree-gen)
9

10 # Generates the files for the directory tree.
11 generate_tree_py(
12 "${CMAKE_CURRENT_SOURCE_DIR}/directory.tree"
13 "${CMAKE_CURRENT_BINARY_DIR}/directory.hpp"
14 "${CMAKE_CURRENT_BINARY_DIR}/directory.cpp"
15 "${CMAKE_CURRENT_BINARY_DIR}/directory.py"
16 )
17

18 add_executable(
19 directory-example
20 "${CMAKE_CURRENT_BINARY_DIR}/directory.cpp"
21 "${CMAKE_CURRENT_SOURCE_DIR}/main.cpp"
22 )
23

24 target_include_directories(
25 directory-example
26 # This directory for primitives.hpp:
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27 PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}"
28 # Binary directory for directory.hpp:
29 PRIVATE "${CMAKE_CURRENT_BINARY_DIR}"
30 )
31

32 target_link_libraries(directory-example tree-lib)
33

34 # The following lines only serve to register the example as a test, so you can
35 # run it using `make test` or `ctest` as well. You don't need them as such in
36 # your own project.
37 enable_testing()
38 add_test(
39 NAME directory-example
40 COMMAND directory-example
41 WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
42 )
43

44 # Only add the Python test if CMake is new enough for us to not have to bother
45 # with FindPythonInterp.
46 if(NOT ${CMAKE_VERSION} VERSION_LESS "3.12")
47 find_package(Python3 COMPONENTS Interpreter)
48 if(${Python3_FOUND})
49 add_test(
50 NAME directory-example-py
51 COMMAND ${Python3_EXECUTABLE} main.py ${CMAKE_CURRENT_BINARY_DIR}
52 WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
53 )
54 endif()
55 endif()

2.2.5 main.cpp

1 #include <iostream>
2 #include <cstdio>
3 #include <stdexcept>
4 #include "../utils.hpp"
5

6 // Include the generated file.
7 #include "directory.hpp"
8

9 // Note: the // comment contents of main(), together with the MARKER lines and
10 // the output of the program, are used to automatically turn this into a
11 // restructured-text page for ReadTheDocs.
12

13 int main() {
14

15 // **********************
16 // Directory tree example
17 // **********************
18 //
19 // This example illustrates the tree system with a Windows-like directory
20 // tree structure. The ``System`` root node consists of one or more drives,
21 // each of which has a drive letter and a root directory with named files
22 // and subdirectories. To make things a little more interesting, a
23 // symlink-like "mount" is added as a file type, which links to another
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24 // directory.
25 //
26 // Using this tree, this example should teach you the basics of using
27 // tree-gen trees. The tutorial runs you through the C++ code of
28 // ``main.cpp`` and Python code of ``main.py``, but be sure to check out
29 // ``directory.tree``, ``primitives.hpp``, ``primitives.hpp``, and (if you
30 // want to reproduce it in your own project) ``CMakeLists.txt`` copied to
31 // the bottom of this page as well. You will also find the complete
32 // ``main.cpp`` and ``main.py`` there.
33 //
34 // Let's start by making the root node using ``tree::base::make()``. This
35 // works somewhat like ``std::make_shared()``, but instead of returning a
36 // ``shared_ptr`` it returns a ``One`` edge. This might come off as a bit
37 // odd, considering trees in graph theory start with a node rather than an
38 // edge. This is just a choice, though; a side effect of how the internal
39 // ``shared_ptr``s work and how Link/OptLink edges work (if you'd store the
40 // tree as the root structure directly, the root node wouldn't always be
41 // stored in the same place on the heap, breaking link nodes).
42 auto system = tree::base::make<directory::System>();
43 MARKER
44

45 // At all times, you can use the ``dump()`` method on a node to see what it
46 // looks like for debugging purposes. It looks like this:
47 system->dump();
48 MARKER
49

50 // While this system node exists as a tree in memory and tree-gen seems
51 // happy, our system tree is at this time not "well-formed". A tree node (or
52 // an edge to one) is only considered well-formed if all of the following
53 // are true:
54 //
55 // - All ``One`` edges in the tree connect to exactly one node.
56 // - All ``Many`` edges in the tree connect to at least one node.
57 // - All ``Link`` and non-empty ``OptLink`` nodes refer to a node reachable
58 // from the root node.
59 // - Each node in the tree is only used by a non-link node once.
60 //
61 // Currently, the second requirement is not met.
62 ASSERT(!system.is_well_formed());
63 MARKER
64

65 // You can get slightly more information using ``check_well_formed()``;
66 // instead or returning a boolean, it will throw a ``NotWellFormed``
67 // exception with an error message.
68 ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());
69 MARKER
70

71 // Note that the name of the type is
72 // `"mangled" <https://en.wikipedia.org/wiki/Name_mangling#C++>`_. The exact
73 // output will vary from compiler to compiler, or even from project to
74 // project. But hopefully it'll be readable enough to make sense of in
75 // general.
76

77 // To fix that, let's add a default drive node to the tree. This should get
78 // drive letter ``A``, because primitives::initialize() is specialized to
79 // return that for ``Letter``s (see primitives.hpp).
80 system->drives.add(tree::base::make<directory::Drive>());
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81 MARKER
82

83 // ``Drive`` has a ``One`` edge that is no empty, though, so the tree still
84 // isn't well-formed. Let's add one of those as well.
85 system->drives[0]->root_dir = tree::base::make<directory::Directory>();
86 MARKER
87

88 // Now we have a well-formed tree. Let's have a look:
89 system.check_well_formed();
90 system->dump();
91 MARKER
92

93 // We can just change the drive letter by assignment, as you would expect.
94 system->drives[0]->letter = 'C';
95 MARKER
96

97 // Before we add files and directories, let's make a shorthand variable for
98 // the root directory. Because root_dir is an edge to another node rather
99 // than the node itself, and thus acts like a pointer or reference to it,

100 // we can just copy it into a variable and modify the variable to update the
101 // tree. Note that you'd normally just write "auto" for the type for
102 // brevity; the type is shown here to make explicit what it turns into.
103 directory::One<directory::Directory> root = system->drives[0]->root_dir;
104 MARKER
105

106 // Let's make a "Program Files" subdirectory and add it to the root.
107 auto programs = tree::base::make<directory::Directory>(
108 tree::base::Any<directory::Entry>{},
109 "Program Files");
110 root->entries.add(programs);
111 system.check_well_formed();
112 MARKER
113

114 // That's quite verbose. But in most cases it can be written way shorter.
115 // Here's the same with the less versatile but also less verbose emplace()
116 // method (which avoids the tree::make() call, but doesn't allow an
117 // insertion index to be specified) and with a "using namespace" for the
118 // tree. emplace() can also be chained, allowing multiple files and
119 // directories to be added at once in this case.
120 {
121 using namespace directory;
122

123 root->entries.emplace<Directory>(Any<Entry>{}, "Windows")
124 .emplace<Directory>(Any<Entry>{}, "Users")
125 .emplace<File>("lots of hibernation data", "hiberfil.sys")
126 .emplace<File>("lots of page file data", "pagefile.sys")
127 .emplace<File>("lots of swap data", "swapfile.sys");
128 }
129 system.check_well_formed();
130 MARKER
131

132 // In order to look for a file in a directory, you'll have to make your own
133 // function to iterate over them. After all, tree-gen doesn't know that the
134 // name field is a key; it has no concept of a key-value store. This is
135 // simple enough to make, but to prevent this example from getting out of
136 // hand we'll just use indices for now.
137
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138 // Let's try to read the "lots of data" string from pagefile.sys.
139 ASSERT(root->entries[4]->name == "pagefile.sys");
140 // ASSERT(root->entries[4]->contents == "lots of page file data");
141 // '-> No member named 'contents' in 'directory::Entry'
142 MARKER
143

144 // Hm, that didn't work so well, because C++ doesn't know that entry 4
145 // happens to be a file rather than a directory or a mount. We have to tell
146 // it to cast to a file first (which throws a std::bad_cast if it's not
147 // actually a file). The easiest way to do that is like this:
148 ASSERT(root->entries[4]->as_file()->contents == "lots of page file data");
149 MARKER
150

151 // No verbose casts required; tree-gen will make member functions for all
152 // the possible subtypes.
153

154 // While it's possible to put the same node in a tree twice (without using
155 // a link), this is not allowed. This isn't checked until a well-formedness
156 // check is performed, however (and in fact can't be without having access
157 // to the root node).
158 root->entries.add(root->entries[0]);
159 ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());
160 MARKER
161

162 // Note that we can index nodes Python-style with negative integers for
163 // add() and remove(), so remove(-1) will remove the broken node we just
164 // added. Note that the -1 is not actually necessary, though, as it is the
165 // default.
166 root->entries.remove(-1);
167 system.check_well_formed();
168 MARKER
169

170 // We *can*, of course, add copies of nodes. That's what copy (shallow) and
171 // clone (deep) are for. Usually you'll want a deep copy, but in this case
172 // shallow is fine, because a File has no child nodes. Note that, even for
173 // a deep copy, links are not modified; it is intended to copy a subtree to
174 // another part of the same tree. To make a complete copy of a tree that
175 // maintains link semantics (i.e. does not link back to the original tree)
176 // the best way would be to go through serialize/deserialize.
177 root->entries.add(root->entries[0]->copy());
178 system.check_well_formed();
179 MARKER
180

181 // Note that the generated classes don't care that there are now two
182 // directories named Program Files in the root. As far as they're concerned,
183 // they're two different directories with the same name. Let's remove it
184 // again, though.
185 root->entries.remove();
186 MARKER
187

188 // Something we haven't looked at yet are links. Links are edges in the tree
189 // that, well, turn it into something that isn't strictly a tree anymore.
190 // While One/Maybe/Any/Many require that nodes are unique, Link/OptLink
191 // require that they are *not* unique, and are present elsewhere in the
192 // tree. Let's make a new directory, and mount it in the Users directory.
193 auto user_dir = tree::base::make<directory::Directory>(
194 tree::base::Any<directory::Entry>{},
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195 "");
196 root->entries.emplace<directory::Mount>(user_dir, "SomeUser");
197 MARKER
198

199 // Note that user_dir is not yet part of the tree. emplace works simply
200 // because it doesn't check whether the directory is in the tree yet. But
201 // the tree is no longer well-formed now.
202 ASSERT_RAISES(tree::base::NotWellFormed, system.check_well_formed());
203 MARKER
204

205 // To make it work again, we can add it as a root directory to a second
206 // drive.
207 system->drives.emplace<directory::Drive>('D', user_dir);
208 system.check_well_formed();
209 MARKER
210

211 // A good way to confuse a filesystem is to make loops. tree-gen is okay
212 // with this, though.
213 system->drives[1]->root_dir->entries.emplace<directory::Mount>(root, "evil link

→˓to C:");
214 system.check_well_formed();
215 MARKER
216

217 // The only place where it matters is in the dump function, which only goes
218 // one level deep. After that, it'll just print an ellipsis.
219 system->dump();
220 MARKER
221

222 // Now that we have a nice tree, let's try the serialization and
223 // deserialization functionality. Serializing is easy:
224 std::string cbor = tree::base::serialize(system);
225 MARKER
226

227 // Let's write it to a file; we'll load this in Python later.
228 {
229 std::ofstream cbor_output;
230 cbor_output.open("tree.cbor", std::ios::out | std::ios::trunc |

→˓std::ios::binary);
231 cbor_output << cbor;
232 }
233 MARKER
234

235 // Let's also have a look at a hexdump of that.
236 int count = 0;
237 for (char c : cbor) {
238 if (count == 16) {
239 std::printf("\n");
240 count = 0;
241 } else if (count > 0 && count % 4 == 0) {
242 std::printf(" ");
243 }
244 std::printf("%02X ", (uint8_t)c);
245 count++;
246 }
247 std::printf("\n");
248 MARKER
249
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250 // You can pull that through http://cbor.me and https://jsonformatter.org
251 // to inspect the output, if you like.
252

253 // We can deserialize it into a complete copy of the tree.
254 auto system2 = tree::base::deserialize<directory::System>(cbor);
255 system2->dump();
256 MARKER
257

258 // Note that equality for two link edges is satisfied only if they point to
259 // the exact same node. That's not the case for the links in our two
260 // entirely separate trees, so the two trees register as unequal.
261 ASSERT(!system2.equals(system));
262 MARKER
263

264 // To be sure no data was lost, we'll have to check the CBOR and debug dumps
265 // instead.
266 ASSERT(tree::base::serialize(system) == tree::base::serialize(system2));
267 std::ostringstream ss1{};
268 system->dump(ss1);
269 std::ostringstream ss2{};
270 system2->dump(ss2);
271 ASSERT(ss1.str() == ss2.str());
272 MARKER
273

274 return 0;
275 }

2.2.6 main.py

1 import sys, os, traceback
2 TEST_DIR = os.path.realpath(sys.argv[1])
3 sys.path.append(TEST_DIR)
4

5

6 def marker():
7 print('###MARKER###')
8

9

10 # Note: the # | comment contents of this file, together with the marker() lines
11 # and the output of the program, are used to automatically turn this into a
12 # restructured-text page for ReadTheDocs. The output is appended to the C++
13 # output.
14

15 # | Python usage
16 # | ============
17

18 # | Let us now turn our attention to tree-gen's Python support. As you may
19 # | remember from the introduction, tree-gen does not provide a direct interface
20 # | between Python and C++ using a tool like SWIG; rather, it provides
21 # | conversion between a CBOR tree representation and the in-memory
22 # | representations of both languages. It then becomes trivial for users of the
23 # | tree-gen structure to provide an API to users that converts from one to the
24 # | other, since only a single string of bytes has to be transferred.
25

26 # | Recall that we wrote the CBOR representation of the tree we constructed in
(continues on next page)
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27 # | the C++ example to a file. Let's try loading this file with Python.
28 from directory import *
29

30 with open(os.path.join(TEST_DIR, 'tree.cbor'), 'rb') as f:
31 tree = System.deserialize(f.read())
32

33 tree.check_well_formed()
34 print(tree)
35 marker()
36

37 # | And there we go; the same structure in pure Python.
38

39 # | As you might expect from a pure-Python structure, field access is much less
40 # | verbose than it is in C++.
41 print(tree.drives[0].letter)
42 print(tree.drives[0].root_dir.entries[0].name)
43 marker()
44

45 # | Perhaps contrary to Python intuition however, the structure provides
46 # | type-safety. You can't assign values to fields that don't exist...
47 try:
48 tree.color_of_a_banana = 'yellow'
49 except AttributeError:
50 traceback.print_exc(file=sys.stdout)
51 marker()
52

53 # | ... or assign values of incorrect types to ones that do:
54 try:
55 tree.drives[0] = 'not-a-drive'
56 except TypeError:
57 traceback.print_exc(file=sys.stdout)
58 marker()
59

60 # | Note that the setters will however try to "typecast" objects they don't know
61 # | about (to be more specific, anything that isn't an instance of Node). So if
62 # | we try to assign a string directly to tree.drives, you get something you
63 # | might not have expected:
64 try:
65 tree.drives = 'not-a-set-of-drives'
66 except TypeError:
67 traceback.print_exc(file=sys.stdout)
68 marker()
69

70 # | The setter for the drives property is trying to cast the string to a
71 # | MultiDrive, which interprets its string input as any other iterable, and
72 # | ultimately tries to cast the first letter to a Drive. There's not much that
73 # | can be done about this; it's just how duck typing works.
74

75 # | Manipulation of trees in Python works just as you might expect it to in
76 # | Python:
77 tree.drives.append(Drive('E'))
78 tree.drives[-1].root_dir = Directory([
79 File('test', 'test-contents'),
80 File('test2', 'test2-contents'),
81 ])
82 del tree.drives[1]
83 assert not tree.is_well_formed()

(continues on next page)

2.2. Complete file listings 39



tree-gen Documentation

(continued from previous page)

84 tree.drives[0].root_dir.entries[-1].target = tree.drives[1].root_dir
85 tree.check_well_formed()
86 print(tree)
87 marker()
88

89 # | Once the Python code is done manipulating the structure, it can be
90 # | serialized again.
91 cbor = tree.serialize()
92 assert cbor == System.deserialize(cbor).serialize()
93 count = 0
94 for c in cbor:
95 if count == 16:
96 print()
97 count = 0
98 elif count > 0 and count % 4 == 0:
99 print(' ', end='')

100 print('%02X ' % c, end='')
101 count += 1
102 print()
103 marker()
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Interpreter example

This example discusses some of the more advanced features of tree-gen, using an interpreter for a very simple language
as an example. This is, however, not a completely integrated or even functional interpreter; we just go over some of
the concepts and things you may run into when you would make such an interpreter.

3.1 External nodes & multiple trees

When trees get large and complicated, you may want to split a tree up into multiple files. This is supported within
tree-gen, as long as there are no circular references to nodes between the files. In this example, we’ve split up the
expression-like nodes into a tree separate from the statement-like nodes. The former, value.tree, has nothing
special going on in this regard, while the latter, program.tree, effectively includes the former. The files are listed
at the bottom of this page for your convenience.

tree-gen itself is unaware of any links between files. For program.tree, it simply generates code assuming that
the types referred to through the external edges exist. For this to be true, you have to tell tree-gen to include the
external tree’s generated header file at the top of its generated header file using the include directive. Note also
that, as tree-gen is unaware of the external tree, you’ll have to use the full C++ TitleCase type name, rather than the
snake_case name for normal edges.

3.2 Integration with Flex/Bison (or other parsers)

When making an interpreter (or parser of any kind) with tree-gen, you’ll probably want to use a tokenizer/parser
generator such as Flex/Bison. With Bison at least, you’ll quickly run into a fundamental issue when trying to store
tree-gen nodes in the generated yyval union: union in C++ can only consist of types with trivial constructors, and
tree-gen nodes are not among those. The author is unfamiliar with other frameworks like it, but this will probably
apply for any C-style parser generator.

The solution is to use raw pointers to the generated node types in this enumeration. For instance, you may end up with
the following (which would be generated by Bison):
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union node_type {
program::Program *prog;
program::Assignment *asgn;
value::Literal *lit;
value::Reference *ref;
// ...

};

To create a new node, instead of using tree::base::make, you use the new keyword directly.

node_type n1, n2;
n1.lit = new value::Literal(2);
n2.ref = new value::Reference("x");

The generated constructors won’t help you much for non-leaf nodes, because they expect edge wrappers (One, Maybe,
etc.) around the parameters, so you’ll typically want to use the constructor without arguments. Instead, to assign child
nodes, you can use Maybe::set_raw(), One::set_raw(), Any::add_raw(), or Many::add_raw().
These functions take ownership of a new-allocated raw pointer to a node - exactly what we need here. Note that
because they take ownership, you don’t have to (and shouldn’t!) delete manually.

node_type n3;
n3.asgn = new program::Assignment();
n3.asgn->rhs.set_raw(n1.lit);
n3.asgn->lhs.set_raw(n2.ref);

node_type n4;
n4.prog = new program::Program();
n4.prog->statements.add_raw(n3.asgn);

Bison will ultimately pass you the final parsed node, which you then have to put into a One edge yourself:

auto tree = tree::base::One<program::Program>();
tree.set_raw(n4.prog);
tree->dump();

↓

Program(
variables: []
statements: [
Assignment(

lhs: <
Reference(
name: x
target --> !MISSING

)
>
rhs: <

Literal(
value: 2

)
>

)
]

)

Note that when you’re using Bison, the enum and its types is largely hidden from you. In the actions the above would
look more like this:
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// Action for a literal:
{ $$ = new value::Literal(std::stoi($1)); }

// Action for a reference:
{ $$ = new value::Reference($1); /* and deallocate $1, assuming it's a char* */ }

// Action for a assignment:
{ $$ = new value::Assignment(); $$->lhs.set_raw($1); $$->rhs.set_raw($3); }

and so on.

3.2.1 Syntax error recovery

Some parser generators (like Bison) allow you to specify recovery rules in case of a syntax error, so the parser doesn’t
just die immediately. This is necessary to emit more than a single error message at a time. To help you store recovery
information in the tree for post-mortem analysis, tree-gen has a special error directive that you can place inside a
node class. For example, if you make a recovery rule that assumes any semicolon encountered after a syntax error
produces a broken statement, you can make a node like this:

# An erroneous statement.
erroneous_statement {

error;
}

Such nodes behave exactly like any other node, with one exception: they always indicate that they’re not well-formed.

auto err_stmt = tree::base::make<program::ErroneousStatement>();
ASSERT_RAISES(tree::base::NotWellFormed, err_stmt.check_well_formed());

↓

tree::base::NotWellFormed exception message: ErroneousStatement error node in tree

3.2.2 Line number information (and annotations in general)

When you’re doing any kind of serious parsing, you’ll want to store as much line number and other contextual infor-
mation as possible, to make your error messages as clear as possible. You could of course add this information to every
node in the tree specification file, perhaps using inheritance to prevent excessive repetition, but this gets annoying fast,
especially when it comes to tree-gen’s well-formedness rules.

Instead, you should be using annotations for this. Annotations are objects added to nodes without you ever having to
declare that you’re going to add them. If that sounds like black magic to you in the context of C++, well, that’s because
it is: internally annotations are stored as a map from std::type_index to a C++11 backport of std::any. . .
it’s complicated. But you don’t have to worry about it. What matters is that each and every node generated by tree-gen
(or anything else that inherits from tree::annotatable::Annotatable) can have zero or one annotation of
every C++ type attached to it.

The use of annotations is not limited to metadata (although that is its primary purpose); they also allow bits of code to
temporarily attach their own data to tree nodes, without the tree definitions needing to be updated to reflect this. This
is especially useful when you’re using tree-gen in a library, and you want to let users operate on your trees. After all,
they wouldn’t be able to modify the tree definition file without forking and recompiling your library.

tree-gen has only one special case for annotations, intended for adding line number information to debug dumps. The
location directive is used for this:
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// Source location annotation type. The generated dumper will see if this
// annotation exists for a node, and if so, write it to the debug dump using
// the << stream operator.
location primitives::SourceLocation

Without going into too much detail about the Annotatable interface (just look at the API docs for that), here’s an
example of how it would work.

n1.lit->set_annotation(primitives::SourceLocation("test", 1, 5));
n2.ref->set_annotation(primitives::SourceLocation("test", 1, 1));
n3.asgn->set_annotation(primitives::SourceLocation("test", 1, 1));
n4.prog->set_annotation(primitives::SourceLocation("test", 1, 1));
tree->dump();

↓

Program( # test:1:1
variables: []
statements: [
Assignment( # test:1:1

lhs: <
Reference( # test:1:1
name: x
target --> !MISSING

)
>
rhs: <

Literal( # test:1:5
value: 2

)
>

)
]

)

Note that we can still use these pointers despite ownership having been passed to the node objects because they refer
to the same piece of memory. In practice, though, you would do this during the parser actions, just after constructing
them.

When serializing and deserializing, annotations are ignored by default; they can be of any type whatsoever, and C++
can’t dynamically introspect which types can be (de)serialized and which can’t be, after all. So even though the exam-
ple SourceLocation object extends tree::annotatable::Serializable, this doesn’t work automagically.

auto node = tree::base::make<value::Literal>(2);
node->set_annotation(primitives::SourceLocation("test", 1, 1));
std::string cbor = tree::base::serialize(node);
auto node2 = tree::base::deserialize<value::Literal>(cbor);
ASSERT(!node2->has_annotation<primitives::SourceLocation>());

// However, you *can* register annotations types for serialization and
// deserialization if you want to through the
// ``tree::annotatable::serdes_registry`` singleton. After that, it will
// work.
tree::annotatable::serdes_registry.add<primitives::SourceLocation>("loc");
cbor = tree::base::serialize(node);
node2 = tree::base::deserialize<value::Literal>(cbor);
ASSERT(node2->has_annotation<primitives::SourceLocation>());
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Two add() methods are provided. The one used here assumes that the type has an appropriate serialize()
method and an appropriate constructor for deserialization, the other allows you to specify them manually using
‘‘std::function‘‘s. The name is optional but strongly recommended; if not used, a C++-compiler-specific identifier
will be used for the type.

Similar to links, annotations aren’t copied as you might expect by copy() and clone(). Specifically,
annotations are stored as std::shared_ptr``s to unknown C++ objects, and therefore
copying a node only copies the references to the annotations. To fully clone
annotations, you'll either have to serialize and deserialize the node they
belong to (after registering with ``serdes_registry of course), or clone them manually.

3.3 Visitor pattern

In the directory example, we avoided the difficulty of dealing with edges to incomplete types, such as a
One<value::Rvalue>, aside from a single as_file() call halfway through. Spamming such typecasts to,
for instance, evaluate an rvalue expression during constant propagation or interpreting, is not very scalable. It can also
lead to headache down the line if you ever have to add more subclasses, as it’s easy to forget or not bother to check for
unknown types when initially writing that code that way. tree-gen also generates the necessary classes for the visitor
pattern for you to avoid this.

In the visitor pattern, you define a class that implements the appropriate visitor interface, and (in this case) the nodes
will call methods on this class depending on their type when you pass the visitor object to them through their visit()
method. Because the visitor interface classes are also generated by tree-gen and have sane default behavior, your code
will “by default” be future-proof, in the sense that you’ll get an error if something unexpected happens, rather than it
failing silently and maybe crashing down the line.

Two visitor base classes are provided, Visitor<T=void> and RecursiveVisitor. In either case, you have to
override visit_node(), which is called when a node is encountered for which no specialization is available; this
should just throw an appropriate exception. You can then optionally override any node in the node class hierarchy to
provide the actual behavior.

The two classes differ in the default behavior when an unspecialized node is encountered: Visitor always defers up
the class hierarchy, while RecursiveVisitor provides a default implementation for node types with edges, where
it simply recursively visits the child nodes depth-first.

The T type in Visitor<T> refers to the return type for the visit methods. It’s fixed to void for
RecursiveVisitor, because if a node has multiple children, there is nothing sensible to return.

Let’s look at what an expression evaluator looks like for this.

class RvalueEvaluator : public value::Visitor<int> {
public:

int visit_node(value::Node &node) override {
throw std::runtime_error("unknown node type");

}

int visit_literal(value::Literal &node) override {
return node.value;

}

int visit_negate(value::Negate &node) override {
return -node.oper->visit(*this);

}

int visit_add(value::Add &node) override {
return node.lhs->visit(*this) + node.rhs->visit(*this);

(continues on next page)
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}

int visit_sub(value::Sub &node) override {
return node.lhs->visit(*this) - node.rhs->visit(*this);

}

int visit_mul(value::Mul &node) override {
return node.lhs->visit(*this) * node.rhs->visit(*this);

}

int visit_div(value::Div &node) override {
return node.lhs->visit(*this) / node.rhs->visit(*this);

}

int visit_reference(value::Reference &node) override {
return node.target->value;

}
};

// 2 + (3 * 4) = 14
auto expr = tree::base::make<value::Add>(

tree::base::make<value::Literal>(2),
tree::base::make<value::Mul>(

tree::base::make<value::Literal>(3),
tree::base::make<value::Literal>(4)

)
);
RvalueEvaluator eval{};
ASSERT(expr->visit(eval) == 14);

If we wouldn’t have implemented visit_node(), the RvalueEvaluator eval{}; line would break, as Rval-
ueEvaluator would be an abstract class because of it. And while the above may look pretty complete, it is in fact not:

ASSERT_RAISES(std::runtime_error, value::ErroneousValue().visit(eval));

↓

std::runtime_error exception message: unknown node type

The visitor pattern is more powerful than recursively calling functions for other reasons as well, because they can be
specialized through inheritance, state can be maintained in the class as the tree is traversed (the dump() method is
actually implemented this way internally), it can be written inline within a function despite the recursive nature, and
so on. But it’s a lot more verbose than the as_*() alternative for simple cases. The choice between visitor pattern
and casts is therefore usually a matter of personal preference.

3.4 Complete file listings

3.4.1 value.tree

1 // Attach \file docstrings to the generated files for Doxygen.
2 # Implementation for value tree classes.
3 source
4

(continues on next page)
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5 # Header for value tree classes.
6 header
7

8 // Include tree base classes.
9 include "tree-base.hpp"

10 tree_namespace tree::base
11

12 // Include primitive types.
13 include "primitives.hpp"
14 import primitives
15

16 // Initialization function to use to construct default values for the tree base
17 // classes and primitives.
18 initialize_function primitives::initialize
19 serdes_functions primitives::serialize primitives::deserialize
20

21 // Source location annotation type. The generated dumper will see if this
22 // annotation exists for a node, and if so, write it to the debug dump using
23 // the << stream operator.
24 location primitives::SourceLocation
25

26 // Set the namespace for the generated classes and attach a docstring.
27 # Namespace for value tree classes.
28 namespace value
29

30 # Variable instance.
31 variable {
32

33 # The name of the variable.
34 name: primitives::Str;
35

36 # The current value of the variable while interpreting.
37 value: primitives::Int;
38

39 }
40

41 # Toplevel expression node.
42 rvalue {
43

44 # A literal integer.
45 literal {
46

47 # The value of the literal.
48 value: primitives::Int;
49

50 }
51

52 # Unary operators.
53 unop {
54

55 # The operand.
56 oper: One<rvalue>;
57

58 # Negation.
59 negate {}
60

61 }
(continues on next page)
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62

63 # Binary operators.
64 binop {
65

66 # Left-hand side of the expression.
67 lhs: One<rvalue>;
68

69 # Right-hand side of the expression.
70 rhs: One<rvalue>;
71

72 # Addition.
73 add {}
74

75 # Subtraction.
76 sub {}
77

78 # Multiplication.
79 mul {}
80

81 # Division.
82 div {}
83

84 }
85

86 # Toplevel node for assignable expressions.
87 lvalue {
88

89 # A variable reference.
90 reference {
91

92 # The name used to refer to the variable.
93 name: primitives::Str;
94

95 # The variable being referenced.
96 // Note that we use a link here to allow multiple places in the
97 // tree to refer to the same variable instance in our toy
98 // interpreter, so we don't have to do a hashmap lookup each time
99 // and a well-formed tree by definition cannot refer to variables

100 // that don't exist.
101 target: Link<variable>;
102

103 }
104

105 # An erroneous expression.
106 erroneous_value {
107 error;
108 }
109

110 }
111

112 }
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3.4.2 program.tree

1 // Attach \file docstrings to the generated files for Doxygen.
2 # Implementation for program tree classes.
3 source
4

5 # Header for program tree classes.
6 header
7

8 // Include tree base classes.
9 include "tree-base.hpp"

10 tree_namespace tree::base
11

12 // Include primitive types.
13 include "primitives.hpp"
14 import primitives
15

16 // Include the generated value tree header.
17 include "value.hpp"
18 import value
19

20 // Initialization function to use to construct default values for the tree base
21 // classes and primitives.
22 initialize_function primitives::initialize
23 serdes_functions primitives::serialize primitives::deserialize
24

25 // Source location annotation type. The generated dumper will see if this
26 // annotation exists for a node, and if so, write it to the debug dump using
27 // the << stream operator.
28 location primitives::SourceLocation
29

30 // Set the namespace for the generated classes and attach a docstring.
31 # Namespace for program tree classes.
32 namespace program
33

34 # A program is a collection of statements.
35 program {
36

37 # Variable declarations for the program.
38 variables: external Any<value::Variable>;
39

40 # The statements in the program.
41 statements: Any<statement>;
42

43 }
44

45

46 # A statement.
47 statement {
48

49 # Conditional statement.
50 if_else {
51

52 # Branch condition.
53 cond: external One<value::Rvalue>;
54

55 # If block.

(continues on next page)
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56 if_block: Any<statement>;
57

58 # Else block.
59 else_block: Any<statement>;
60

61 }
62

63 # For loop, from start to (non-inclusive) end.
64 for_loop {
65

66 # Variable to assign.
67 var: external One<value::Lvalue>;
68

69 # Start value.
70 start: external One<value::Rvalue>;
71

72 # Stop value.
73 stop: external One<value::Rvalue>;
74

75 # The repeated code.
76 block: Any<statement>;
77

78 }
79

80 # Assignment statement.
81 assignment {
82

83 # Variable to assign.
84 lhs: external One<value::Lvalue>;
85

86 # Expression to assign it to.
87 rhs: external One<value::Rvalue>;
88

89 }
90

91 # Print statement.
92 print {
93

94 # Value to print.
95 expr: external One<value::Rvalue>;
96

97 }
98

99 # An erroneous statement.
100 erroneous_statement {
101 error;
102 }
103

104 }

3.4.3 primitives.hpp

1 /** \file
2 * Defines primitives used in the generated directory tree structure.
3 */

(continues on next page)

50 Chapter 3. Interpreter example



tree-gen Documentation

(continued from previous page)

4

5 #pragma once
6

7 #include <string>
8 #include "tree-base.hpp"
9

10 /**
11 * Namespace with primitives used in the generated directory tree structure.
12 */
13 namespace primitives {
14

15 /**
16 * Integer primitive.
17 */
18 using Int = int;
19

20 /**
21 * Strings, used to represent filenames and file contents.
22 */
23 using Str = std::string;
24

25 /**
26 * Initialization function. This must be specialized for any types used as
27 * primitives in a tree that are actual C primitives (int, char, bool, etc),
28 * as these are not initialized by the T() construct.
29 */
30 template <class T>
31 T initialize() { return T(); };
32

33 /**
34 * Declare the default initializer for integers. It's declared inline to avoid
35 * having to make a cpp file just for this.
36 */
37 template <>
38 inline Int initialize<Int>() {
39 return 0;
40 }
41

42 /**
43 * Serialization function. This must be specialized for any types used as
44 * primitives in a tree. The default implementation doesn't do anything.
45 */
46 template <typename T>
47 void serialize(const T &obj, tree::cbor::MapWriter &map) {
48 }
49

50 /**
51 * Serialization function for Int.
52 */
53 template <>
54 inline void serialize<Int>(const Int &obj, tree::cbor::MapWriter &map) {
55 map.append_int("val", obj);
56 }
57

58 /**
59 * Serialization function for Str.
60 */

(continues on next page)
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61 template <>
62 inline void serialize<Str>(const Str &obj, tree::cbor::MapWriter &map) {
63 map.append_string("val", obj);
64 }
65

66 /**
67 * Deserialization function. This must be specialized for any types used as
68 * primitives in a tree. The default implementation doesn't do anything.
69 */
70 template <typename T>
71 T deserialize(const tree::cbor::MapReader &map) {
72 return initialize<T>();
73 }
74

75 /**
76 * Deserialization function for Int.
77 */
78 template <>
79 inline Int deserialize<Int>(const tree::cbor::MapReader &map) {
80 return map.at("val").as_int();
81 }
82

83 /**
84 * Deserialization function for Str.
85 */
86 template <>
87 inline Str deserialize<Str>(const tree::cbor::MapReader &map) {
88 return map.at("val").as_string();
89 }
90

91 /**
92 * Source location annotation object, containing source file line numbers etc.
93 */
94 class SourceLocation: tree::annotatable::Serializable {
95 public:
96 std::string filename;
97 int line;
98 int column;
99

100 SourceLocation(
101 const std::string &filename,
102 uint32_t line = 0,
103 uint32_t column = 0
104 ) : filename(filename), line(line), column(column) {
105 }
106

107 /**
108 * Serialization logic for SourceLocation.
109 */
110 inline void serialize(tree::cbor::MapWriter &map) const override {
111 map.append_string("filename", filename);
112 map.append_int("line", line);
113 map.append_int("column", column);
114 }
115

116 /**
117 * Deserialization logic for SourceLocation.

(continues on next page)
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118 */
119 inline SourceLocation(const tree::cbor::MapReader &map) {
120 filename = map.at("filename").as_string();
121 line = map.at("line").as_int();
122 column = map.at("column").as_int();
123 }
124

125 };
126

127 /**
128 * Stream << overload for source location objects.
129 */
130 inline std::ostream& operator<<(std::ostream& os, const primitives::SourceLocation&

→˓object) {
131 os << object.filename << ":" << object.line << ":" << object.column;
132 return os;
133 }
134

135 } // namespace primitives

3.4.4 CMakeLists.txt

1 cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
2

3 project(interpreter-example CXX)
4

5 # Add the tree-gen repository root directory. Normally, your project would be
6 # located outside of tree-gen's root, which means you can omit the second
7 # argument.
8 add_subdirectory(../.. tree-gen)
9

10 # Generates the files for the value tree.
11 generate_tree_py(
12 "${CMAKE_CURRENT_SOURCE_DIR}/value.tree"
13 "${CMAKE_CURRENT_BINARY_DIR}/value.hpp"
14 "${CMAKE_CURRENT_BINARY_DIR}/value.cpp"
15 "${CMAKE_CURRENT_BINARY_DIR}/value.py"
16 )
17

18 # Generates the files for the program tree.
19 generate_tree_py(
20 "${CMAKE_CURRENT_SOURCE_DIR}/program.tree"
21 "${CMAKE_CURRENT_BINARY_DIR}/program.hpp"
22 "${CMAKE_CURRENT_BINARY_DIR}/program.cpp"
23 "${CMAKE_CURRENT_BINARY_DIR}/program.py"
24 )
25

26 add_executable(
27 interpreter-example
28 "${CMAKE_CURRENT_BINARY_DIR}/value.cpp"
29 "${CMAKE_CURRENT_BINARY_DIR}/program.cpp"
30 "${CMAKE_CURRENT_SOURCE_DIR}/main.cpp"
31 )
32

33 target_include_directories(
(continues on next page)
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34 interpreter-example
35 # This directory for primitives.hpp:
36 PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}"
37 # Binary directory for directory.hpp:
38 PRIVATE "${CMAKE_CURRENT_BINARY_DIR}"
39 )
40

41 target_link_libraries(interpreter-example tree-lib)
42

43 # The following lines only serve to register the example as a test, so you can
44 # run it using `make test` or `ctest` as well. You don't need them as such in
45 # your own project.
46 enable_testing()
47 add_test(interpreter-example interpreter-example)

3.4.5 main.cpp

1 #include <iostream>
2 #include <cstdio>
3 #include <stdexcept>
4 #include "../utils.hpp"
5

6 // Include the generated files.
7 #include "value.hpp"
8 #include "program.hpp"
9

10 // Note: the // comment contents of main(), together with the MARKER lines and
11 // the output of the program, are used to automatically turn this into a
12 // restructured-text page for ReadTheDocs.
13

14 int main() {
15

16 // *******************
17 // Interpreter example
18 // *******************
19 //
20 // This example discusses some of the more advanced features of tree-gen,
21 // using an interpreter for a very simple language as an example. This is,
22 // however, not a completely integrated or even functional interpreter; we
23 // just go over some of the concepts and things you may run into when you
24 // would make such an interpreter.
25 //
26 // External nodes & multiple trees
27 // ===============================
28 //
29 // When trees get large and complicated, you may want to split a tree up
30 // into multiple files. This is supported within tree-gen, as long as there
31 // are no circular references to nodes between the files. In this example,
32 // we've split up the expression-like nodes into a tree separate from the
33 // statement-like nodes. The former, ``value.tree``, has nothing special
34 // going on in this regard, while the latter, ``program.tree``, effectively
35 // includes the former. The files are listed at the bottom of this page
36 // for your convenience.
37 //
38 // tree-gen itself is unaware of any links between files. For

(continues on next page)
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39 // ``program.tree``, it simply generates code assuming that the types
40 // referred to through the ``external`` edges exist. For this to be true,
41 // you have to tell tree-gen to include the external tree's generated
42 // header file at the top of its generated header file using the ``include``
43 // directive. Note also that, as tree-gen is unaware of the external tree,
44 // you'll have to use the full C++ TitleCase type name, rather than the
45 // snake_case name for normal edges.
46 //
47 // Integration with Flex/Bison (or other parsers)
48 // ==============================================
49 //
50 // When making an interpreter (or parser of any kind) with tree-gen, you'll
51 // probably want to use a tokenizer/parser generator such as Flex/Bison.
52 // With Bison at least, you'll quickly run into a fundamental issue when
53 // trying to store tree-gen nodes in the generated ``yyval`` union:
54 // union in C++ can only consist of types with trivial constructors, and
55 // tree-gen nodes are not among those. The author is unfamiliar with
56 // other frameworks like it, but this will probably apply for any C-style
57 // parser generator.
58 //
59 // The solution is to use raw pointers to the generated node types in this
60 // enumeration. For instance, you may end up with the following (which would
61 // be generated by Bison):
62 union node_type {
63 program::Program *prog;
64 program::Assignment *asgn;
65 value::Literal *lit;
66 value::Reference *ref;
67 // ...
68 };
69 MARKER
70

71 // To create a new node, instead of using ``tree::base::make``,
72 // you use the ``new`` keyword directly.
73 node_type n1, n2;
74 n1.lit = new value::Literal(2);
75 n2.ref = new value::Reference("x");
76 MARKER
77

78 // The generated constructors won't help you much for non-leaf nodes,
79 // because they expect edge wrappers (One, Maybe, etc.) around the
80 // parameters, so you'll typically want to use the constructor without
81 // arguments. Instead, to assign child nodes, you can use
82 // ``Maybe::set_raw()``, ``One::set_raw()``, ``Any::add_raw()``,
83 // or ``Many::add_raw()``. These functions take ownership of a new-allocated
84 // raw pointer to a node - exactly what we need here. Note that because they
85 // take ownership, you don't have to (and shouldn't!) delete manually.
86 node_type n3;
87 n3.asgn = new program::Assignment();
88 n3.asgn->rhs.set_raw(n1.lit);
89 n3.asgn->lhs.set_raw(n2.ref);
90

91 node_type n4;
92 n4.prog = new program::Program();
93 n4.prog->statements.add_raw(n3.asgn);
94 MARKER
95
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96 // Bison will ultimately pass you the final parsed node, which you then have
97 // to put into a ``One`` edge yourself:
98 auto tree = tree::base::One<program::Program>();
99 tree.set_raw(n4.prog);

100 tree->dump();
101 MARKER
102

103 // Note that when you're using Bison, the enum and its types is largely
104 // hidden from you. In the actions the above would look more like this:
105 //
106 // .. code-block:: none
107 //
108 // // Action for a literal:
109 // { $$ = new value::Literal(std::stoi($1)); }
110 //
111 // // Action for a reference:
112 // { $$ = new value::Reference($1); /* and deallocate $1, assuming it's a char*

→˓*/ }
113 //
114 // // Action for a assignment:
115 // { $$ = new value::Assignment(); $$->lhs.set_raw($1); $$->rhs.set_raw($3); }
116 //
117 // and so on.
118 //
119 // Syntax error recovery
120 // ---------------------
121 //
122 // Some parser generators (like Bison) allow you to specify recovery rules
123 // in case of a syntax error, so the parser doesn't just die immediately.
124 // This is necessary to emit more than a single error message at a time.
125 // To help you store recovery information in the tree for post-mortem
126 // analysis, tree-gen has a special ``error`` directive that you can place
127 // inside a node class. For example, if you make a recovery rule that
128 // assumes any semicolon encountered after a syntax error produces a broken
129 // statement, you can make a node like this:
130 //
131 // .. code-block:: none
132 //
133 // # An erroneous statement.
134 // erroneous_statement {
135 // error;
136 // }
137 //
138 // Such nodes behave exactly like any other node, with one exception: they
139 // always indicate that they're not well-formed.
140 auto err_stmt = tree::base::make<program::ErroneousStatement>();
141 ASSERT_RAISES(tree::base::NotWellFormed, err_stmt.check_well_formed());
142 MARKER;
143

144 // Line number information (and annotations in general)
145 // ----------------------------------------------------
146 //
147 // When you're doing any kind of serious parsing, you'll want to store as
148 // much line number and other contextual information as possible, to make
149 // your error messages as clear as possible. You could of course add this
150 // information to every node in the tree specification file, perhaps using
151 // inheritance to prevent excessive repetition, but this gets annoying fast,
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152 // especially when it comes to tree-gen's well-formedness rules.
153 //
154 // Instead, you should be using annotations for this. Annotations are
155 // objects added to nodes without you ever having to declare that you're
156 // going to add them. If that sounds like black magic to you in the context
157 // of C++, well, that's because it is: internally annotations are stored
158 // as a map from ``std::type_index`` to a C++11 backport of ``std::any``...
159 // it's complicated. But you don't have to worry about it. What matters is
160 // that each and every node generated by tree-gen (or anything else that
161 // inherits from ``tree::annotatable::Annotatable``) can have zero or one
162 // annotation of every C++ type attached to it.
163 //
164 // The use of annotations is not limited to metadata (although that is its
165 // primary purpose); they also allow bits of code to temporarily attach
166 // their own data to tree nodes, without the tree definitions needing to be
167 // updated to reflect this. This is especially useful when you're using
168 // tree-gen in a library, and you want to let users operate on your trees.
169 // After all, they wouldn't be able to modify the tree definition file
170 // without forking and recompiling your library.
171 //
172 // tree-gen has only one special case for annotations, intended for adding
173 // line number information to debug dumps. The ``location`` directive is
174 // used for this:
175 //
176 // .. code-block:: none
177 //
178 // // Source location annotation type. The generated dumper will see if this
179 // // annotation exists for a node, and if so, write it to the debug dump using
180 // // the << stream operator.
181 // location primitives::SourceLocation
182 //
183 // Without going into too much detail about the Annotatable interface (just
184 // look at the API docs for that), here's an example of how it would work.
185 n1.lit->set_annotation(primitives::SourceLocation("test", 1, 5));
186 n2.ref->set_annotation(primitives::SourceLocation("test", 1, 1));
187 n3.asgn->set_annotation(primitives::SourceLocation("test", 1, 1));
188 n4.prog->set_annotation(primitives::SourceLocation("test", 1, 1));
189 tree->dump();
190 MARKER
191

192 // Note that we can still use these pointers despite ownership having been
193 // passed to the node objects because they refer to the same piece of
194 // memory. In practice, though, you would do this during the parser actions,
195 // just after constructing them.
196 //
197 // When serializing and deserializing, annotations are ignored by default;
198 // they can be of any type whatsoever, and C++ can't dynamically introspect
199 // which types can be (de)serialized and which can't be, after all. So even
200 // though the example SourceLocation object extends
201 // ``tree::annotatable::Serializable``, this doesn't work automagically.
202 auto node = tree::base::make<value::Literal>(2);
203 node->set_annotation(primitives::SourceLocation("test", 1, 1));
204 std::string cbor = tree::base::serialize(node);
205 auto node2 = tree::base::deserialize<value::Literal>(cbor);
206 ASSERT(!node2->has_annotation<primitives::SourceLocation>());
207

208 // However, you *can* register annotations types for serialization and
(continues on next page)
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209 // deserialization if you want to through the
210 // ``tree::annotatable::serdes_registry`` singleton. After that, it will
211 // work.
212 tree::annotatable::serdes_registry.add<primitives::SourceLocation>("loc");
213 cbor = tree::base::serialize(node);
214 node2 = tree::base::deserialize<value::Literal>(cbor);
215 ASSERT(node2->has_annotation<primitives::SourceLocation>());
216 MARKER
217

218 // Two ``add()`` methods are provided. The one used here assumes that the
219 // type has an appropriate ``serialize()`` method and an appropriate
220 // constructor for deserialization, the other allows you to specify them
221 // manually using ``std::function``s. The name is optional but strongly
222 // recommended; if not used, a C++-compiler-specific identifier will be used
223 // for the type.
224 //
225 // Similar to links, annotations aren't copied as you might expect by
226 // ``copy()`` and ``clone()``. Specifically, annotations are stored as
227 // ``std::shared_ptr``s to unknown C++ objects, and therefore copying a
228 // node only copies the references to the annotations. To fully clone
229 // annotations, you'll either have to serialize and deserialize the node
230 // they belong to (after registering with ``serdes_registry`` of course), or
231 // clone them manually.
232

233 // Visitor pattern
234 // ===============
235 //
236 // In the directory example, we avoided the difficulty of dealing with edges
237 // to incomplete types, such as a ``One<value::Rvalue>``, aside from a
238 // single ``as_file()`` call halfway through. Spamming such typecasts to,
239 // for instance, evaluate an rvalue expression during constant propagation
240 // or interpreting, is not very scalable. It can also lead to headache down
241 // the line if you ever have to add more subclasses, as it's easy to forget
242 // or not bother to check for unknown types when initially writing that code
243 // that way. tree-gen also generates the necessary classes for the visitor
244 // pattern for you to avoid this.
245 //
246 // In the visitor pattern, you define a class that implements the
247 // appropriate visitor interface, and (in this case) the nodes will call
248 // methods on this class depending on their type when you pass the visitor
249 // object to them through their ``visit()`` method. Because the visitor
250 // interface classes are also generated by tree-gen and have sane default
251 // behavior, your code will "by default" be future-proof, in the sense that
252 // you'll get an error if something unexpected happens, rather than it
253 // failing silently and maybe crashing down the line.
254 //
255 // Two visitor base classes are provided, ``Visitor<T=void>`` and
256 // ``RecursiveVisitor``. In either case, you have to override
257 // ``visit_node()``, which is called when a node is encountered for which
258 // no specialization is available; this should just throw an appropriate
259 // exception. You can then optionally override any node in the node class
260 // hierarchy to provide the actual behavior.
261 //
262 // The two classes differ in the default behavior when an unspecialized
263 // node is encountered: ``Visitor`` always defers up the class hierarchy,
264 // while ``RecursiveVisitor`` provides a default implementation for node
265 // types with edges, where it simply recursively visits the child nodes
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266 // depth-first.
267 //
268 // The T type in ``Visitor<T>`` refers to the return type for the visit
269 // methods. It's fixed to ``void`` for ``RecursiveVisitor``, because if a
270 // node has multiple children, there is nothing sensible to return.
271 //
272 // Let's look at what an expression evaluator looks like for this.
273 class RvalueEvaluator : public value::Visitor<int> {
274 public:
275 int visit_node(value::Node &node) override {
276 throw std::runtime_error("unknown node type");
277 }
278

279 int visit_literal(value::Literal &node) override {
280 return node.value;
281 }
282

283 int visit_negate(value::Negate &node) override {
284 return -node.oper->visit(*this);
285 }
286

287 int visit_add(value::Add &node) override {
288 return node.lhs->visit(*this) + node.rhs->visit(*this);
289 }
290

291 int visit_sub(value::Sub &node) override {
292 return node.lhs->visit(*this) - node.rhs->visit(*this);
293 }
294

295 int visit_mul(value::Mul &node) override {
296 return node.lhs->visit(*this) * node.rhs->visit(*this);
297 }
298

299 int visit_div(value::Div &node) override {
300 return node.lhs->visit(*this) / node.rhs->visit(*this);
301 }
302

303 int visit_reference(value::Reference &node) override {
304 return node.target->value;
305 }
306 };
307

308 // 2 + (3 * 4) = 14
309 auto expr = tree::base::make<value::Add>(
310 tree::base::make<value::Literal>(2),
311 tree::base::make<value::Mul>(
312 tree::base::make<value::Literal>(3),
313 tree::base::make<value::Literal>(4)
314 )
315 );
316 RvalueEvaluator eval{};
317 ASSERT(expr->visit(eval) == 14);
318 MARKER
319

320 // If we wouldn't have implemented ``visit_node()``, the
321 // ``RvalueEvaluator eval{};`` line would break, as RvalueEvaluator would
322 // be an abstract class because of it. And while the above may look pretty
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323 // complete, it is in fact not:
324 ASSERT_RAISES(std::runtime_error, value::ErroneousValue().visit(eval));
325 MARKER
326

327 // The visitor pattern is more powerful than recursively calling functions
328 // for other reasons as well, because they can be specialized through
329 // inheritance, state can be maintained in the class as the tree is
330 // traversed (the ``dump()`` method is actually implemented this way
331 // internally), it can be written inline within a function despite the
332 // recursive nature, and so on. But it's a lot more verbose than the
333 // ``as_*()`` alternative for simple cases. The choice between visitor
334 // pattern and casts is therefore usually a matter of personal preference.
335 MARKER
336

337 return 0;
338 }
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